Дроссельная шайба «Гранбаланс ДМ», DN 32-125, PN 1,6 МПа

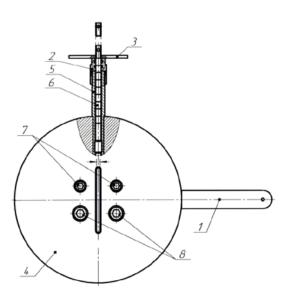
Описание

Дроссельная шайба «Гранбаланс ДМ» предназначена для гидравлической балансировки, ограничения расхода теплоносителя в системах отопления, холодоснабжения и кондиционирования с водой или водным раствором этиленгликоля с концентрацией не более 50%.

Доступна для заказа в диапазоне диаметров от 32 до 125 мм. Изделие выполнено из углеродистой стали и эксплуатируется с температурой теплоносителя до 120 °С и давлением 1.6 МПа.

Регулировка расхода теплоносителя осуществляется за счет изменения проходного сечения шайбы посредством перемещения регулирующего болта и открытия/ закрытия буферных отверстий внутри диафрагмы.

Дроссельная шайба «Гранбаланс ДМ» устанавливается между фланцами трубопровода и имеет возможность блокировки настроечной позиции величины подъема штока. Для упрощения установки дроссельной шайбы во фланцевое соединение трубопроводов в конструкции шайбы предусмотрен стальной держатель.


Основные преимущества

- Бюджетное изделие для ограничения расхода теплоносителя до необходимо значения;
- Использование «Гранбаланс ДМ» позволяет снизить шумы в системе:
- Компактная конструкция изделия и возможность монтажа в любом положении на подающем и обратном трубопопроводах;
- Фиксация настроечной позиции величины подъема регулирую-
- Снижение затрат на балансировку, энергосбережение и высокий уровень комфорта.

Технические характеристики

Textili rectific xapattreprietimor								
Наименование параметра	Значение	Примечание						
Номинальный диаметр, DN, мм	32 – 125							
Номинальное давление, PN, МПа	1,6							
Максимальная температура рабочей среды, °С	+120							
Минимальная рабочая температура, °С	- 10	< 0 только для воды с добавлением этиленгли- коля не более 50%						
Тип присоединения:	межфланцевое							

Спецификация

No	Наименование	Материал		
1	Держатель	Сталь Углеродистая		
2	Гайка изолирующая	Сталь Углеродистая		
3	Маховик	Сталь Углеродистая		
4	Диафрагма	Диафрагма Сталь Углеродистая		
5	Муфта	Сталь Углеродистая		
6	Регулировочный болт	Латунь		
7и8	Заглушки для буферных отверстий	Оцинкованная сталь		

Размеры, мм

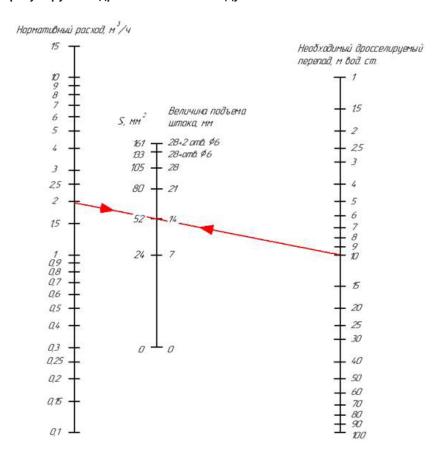
Артикул	DN	Длина, мм	Толщина, мм	Высота ,мм	Масса, кг
LN01A605847	32	177	16	170	0,74
LN01A605849	40	187	16	175	0,89
LN01A605789	50	201	16	193	1,14
LN01A605851	65	222	16	228	1,58
LN01A605852	80	233	16	258	1,87
LN01A605860	100	296	16	258	2,58
LN01A605861	125	284	16	334	3,45

Настройка шайбы

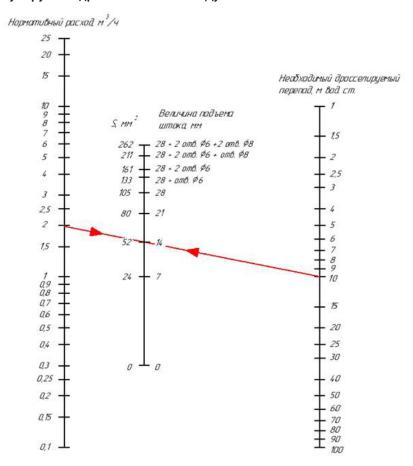
Для Настройки Дроссельной шайбы на необходимый расход следует использовать данные номограмм, приведенных ниже для каждого диаметра дроссельной шайбы. При перемещении регулировочного болта и открытия буферных отверстий изменяется площадь сечения проходных отверстий шайбы, чем и достигается регулировка расхода.

Перемещение регулировочного болта осуществляется посредством вращающегося маховика. Открытие буферных отверстий шайбы - посредством шестигранного ключа, рассчитанного на работу с винтами буферных отверстий.

Если проходного сечения, меняющегося за счет движения регулировочного болта дроссельной шайбы (тонкая настройка), недостаточно для обеспечения необходимого расхода, то выкручиваются дополнительно винты из буферных отверстий (1,2,3 или 4 сразу) в зависимости от требуемого расхода.

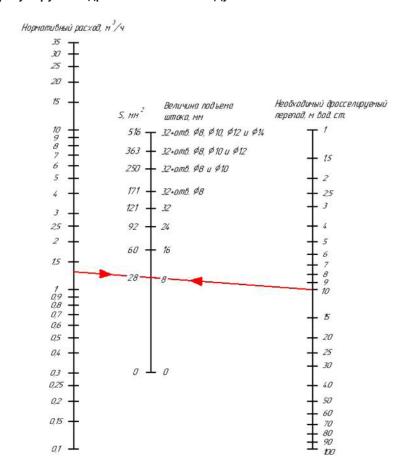

Последовательность определения величины подъема штока при открытых буферных отверстиях:

- 1. Зная необходимый перепад давления и расход, который требуется получить при данном перепаде, находим точку пересечения прямой от расхода к перепаду давления со средней шкалой номограммы;
- 2. Определяем необходимую площадь условного сечения (с левой стороны средней шкалы номограммы);
- 3. Смотрим: какое деление шкалы находится непосредственно над точкой пересечения. Необходимо открыть те отверстия, которые указаны на этом делении (с правой стороны средней шкалы номограммы).
- 4. Затем из площади условного сечения, указанного слева от деления, которое находится над точкой пересечения, необходимо вычесть суммарную площадь открытых отверстий;
- 5. Оставшуюся площадь необходимо разделить на 4, чтобы определить необходимый подъем регулирующего штока (т.к. подъем регулирующего болта на 1 мм увеличивает площадь условного сечения приблизительно на 4 мм2).

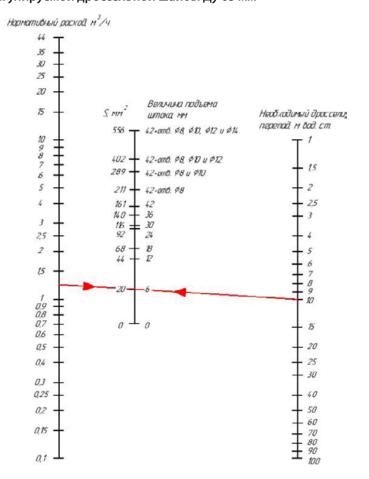

Для блокировки настроечной позиции величины подъема штока предусмотрено наличие пломбировки через отверстие держателя, соединенного с отверстием вверху регулировочного болта.

За дополнительной информацией обращайтесь в Компанию АДЛ.

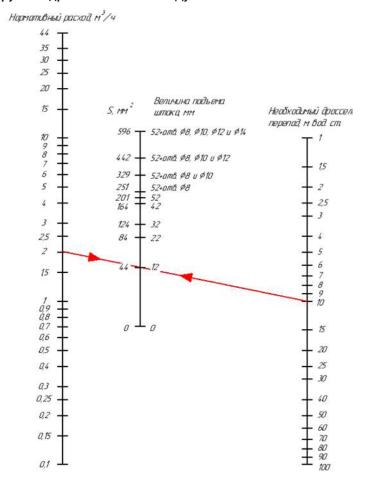
Номограмма настройки регулируемой дроссельной шайбы Ду 32 мм



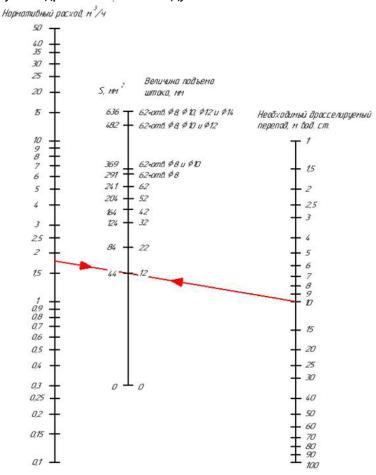
Номограмма настройки регулируемой дроссельной шайбы Ду 40 мм



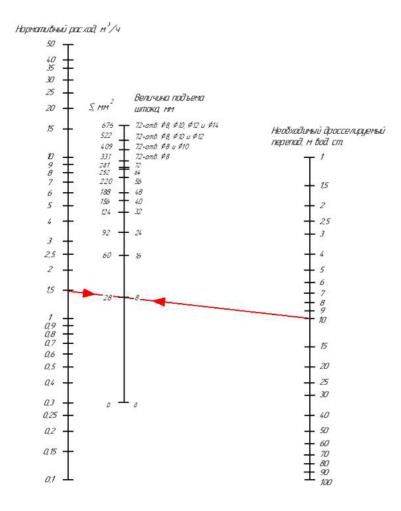
Номограмма настройки регулируемой дроссельной шайбы Ду 50 мм



Номограмма настройки регулируемой дроссельной шайбы Ду 65 мм



Номограмма настройки регулируемой дроссельной шайбы Ду 80 мм



Номограмма настройки регулируемой дроссельной шайбы Ду 100 мм

Номограмма настройки регулируемой дроссельной шайбы Ду 125 мм

